Ha	117	ic	ket	N	um	ber:

Code No. : 14406 O2

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (ECE) II Year II-Semester Old Examinations, May-2018

Signal Analysis and Transform Techniques

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

1. Contrast between deterministic and random signals.

 $x(t) = cos(\frac{\pi}{3}t) + sin(\frac{\pi}{4}t)$, Is x(t) periodic, if so find the period. 2.

- 3. Mention the Transfer characteristics of ideal Low pass and High pass filters.
- Obtain the Fourier transform of Unit step function. 4.
- 5. Find the unilateral Laplace Transform of the constant D.C signal with amplitude 'A'.
- Define Nyquist rate of Sampling and determine Nyquist rate of Sampling for the signal 6. $x(t) = sinc(10\pi t)$
- Determine the energy of the discrete time signal $x(n) = \left(\frac{1}{3}\right)^n u(n)$ 7.
- Find inverse Z Transform of $\left(1-\frac{1}{z}\right)^{-2}$ 8.
- Obtain the relation between convolution and correlation. 9.
- 10. State any two properties of cross correlation.

Part-B $(5 \times 10 = 50 Marks)$

11. a) Check whether the following signals are energy or power signals by determining the [5] Energy and Average Power?

i) $x(t) = e^{-2|t|}$ ii) $x(t) = 3\cos(10t)$

- b) Derive the necessary expression to represent the function x(t) using Exponential Fourier [5] Series.
- 12. a) With the help of Fourier transform properties, determine the time domain signal x(t), if [5] frequency domain signal is given by $X(\omega) = j \frac{d}{d\omega} \left| \frac{e^{j2\omega}}{1+(\frac{j\omega}{2})} \right|$
 - b) State and prove the following properties of Fourier transform: [5] i) Frequency shifting property ii) Time differentiation property.
- 13. a) State and prove the sampling theorem for Band limited signals. [6]
 - b) Find the time signal x (t) for which $X(S) = \frac{5(S+2)}{S^2(S+4)}$. [4]
- 14. a) Determine the Z-transform and ROC for discrete time sequence $x(n) = 7\left(\frac{1}{3}\right)^n \cos(3n)$ [5] and plot the pole-zero plot of X(z).
 - b) Determine the Discrete time Fourier Transform (DTFT) of the signal [5] $\mathbf{x}(\mathbf{n}) = \left(\frac{1}{2}\right)^{\mathbf{n}} \mathbf{u}(\mathbf{n}) - \left(\frac{1}{4}\right)^{\mathbf{n}} \mathbf{u}(-\mathbf{n}-1).$

15.	a) Using graphical method determine the convolution of $x(n)=\{2,-1,3,2\}$ & $h(n)=\{1,-1,1,1\}$	[5]
	b) Prove that the Fourier Transform of Autocorrelation function of an Energy signal $x(t)$ is equal to the Energy Spectral Density (ESD).	[5]
16.	a) The relation between input and output of a Continuous time system is given by $y(t) = t x(t)$. Check whether the system is Linear Time-Invariant (LTI) or not?	[4]
	b) Define Magnitude and phase distortions. Derive the Transfer function of a Distortion less LTI system and also draw the Magnitude and Phase spectrums.	[6]
17.	Answer any two of the following:	
	a) State and Prove the Initial and Final value theorems of Laplace Transform.	[5]
	 b) Discrete time signal is given by, x(n) = {1,1,1,1,2} Sketch the following signals i) x(n+1) 	[5]
	ii) Even samples of $x(n)$	
	iii) Odd samples of $x(n)$	
	c) Show that the output of an LTI system is given by the linear convolution of input signal and impulse response of the system.	[5]
	ଔଔଔଷଧ୍ୟର	

L Award a